Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 44(2): 615-628, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29275437

RESUMO

In euryhaline teleosts, the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-interrenal axes (HPT and HPI, respectively) are regulated in response to environmental stimuli such as salinity changes. However, the molecular players participating in this physiological process in the gilthead seabream (Sparus aurata), a species of high value for aquaculture, are still not identified and/or fully characterized in terms of gene expression regulation. In this sense, this study identifies and isolates the thyrotropin-releasing hormone (trh) mRNA sequence from S. aurata, encoding prepro-Trh, the putative factor initiating the HPT cascade. In addition, the regulation of trh expression and of key brain genes in the HPI axis, i.e., corticotrophin-releasing hormone (crh) and corticotrophin-releasing hormone-binding protein (crhbp), was studied when the osmoregulatory status of S. aurata was challenged by exposure to different salinities. The deduced amino acid structure of trh showed 65-81% identity with its teleostean orthologs. Analysis of the tissue distribution of gene expression showed that trh mRNA is, though ubiquitously expressed, mainly found in brain. Subsequently, regulation of gene expression of trh, crh, and crhbp was characterized in fish acclimated to 5-, 15-, 40-, and 55-ppt salinities. In this regard, the brain gene expression pattern of trh mRNA was similar to that found for the crh gene, showing an upregulation of gene expression in seabream acclimated to the highest salinity tested. Conversely, crhbp did not change in any of the groups tested. Our results suggest that Trh and Crh play an important role in the acclimation of S. aurata to hypersaline environments.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/genética , Regulação da Expressão Gênica , Dourada/fisiologia , Hormônio Liberador de Tireotropina/genética , Sequência de Aminoácidos , Animais , Filogenia , Salinidade , Dourada/genética , Homologia de Sequência , Estresse Fisiológico
2.
Fish Physiol Biochem ; 44(1): 349-373, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29147970

RESUMO

The effects of different environmental salinities (0, 12, 40, and 55 ppt) on pepsinogen 2 (pga2), trypsinogen 2 (try2), chymotrypsinogen (ctr), and pancreatic alpha-amylase (amy2a) gene expression, and on the total activities of their corresponding enzymes, were assessed in Chelon labrosus juveniles, after their corresponding full-complementary DNA sequences were cloned. Furthermore, the quantitative effect of different salinities on the hydrolysis of feed protein by fish digestive enzymes was evaluated using an in vitro system. Relative pga2 expression levels were significantly higher in animals maintained at 12 ppt, while a significantly higher gene expression level for ctr and try2 was observed at 40 ppt. amy2a gene expression showed its maximum level at 40 ppt and the lowest at 55 ppt. A significant reduction in the activity of amylase with the increase in salinity was observed, whereas the maximum activity for alkaline proteases was observed in individuals maintained at 40 ppt. A negative effect of high salinity on the action of proteases was confirmed by the in vitro assay, indicating a decreased efficiency in the digestive function in C. labrosus when maintained at high environmental salinities. Nevertheless, individuals can live under different environmental salinities, even though gene expression is different and the enzymatic activities are not maintained at the highest studied salinity. Therefore, compensatory mechanisms should be in place. Results are discussed on the light of the importance as a new species for aquaculture.


Assuntos
Digestão/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Salinidade , Smegmamorpha/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Quimotripsinogênio/genética , Quimotripsinogênio/metabolismo , DNA Complementar/genética , Mucosa Intestinal/metabolismo , alfa-Amilases Pancreáticas/genética , alfa-Amilases Pancreáticas/metabolismo , Pepsinogênio A/genética , Pepsinogênio A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Tripsinogênio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27557988

RESUMO

Thyroid hormones are involved in many developmental and physiological processes, including osmoregulation. The regulation of the thyroid system by environmental salinity in the euryhaline gilthead seabream (Sparus aurata) is still poorly characterized. To this end seabreams were exposed to four different environmental salinities (5, 15, 40 and 55ppt) for 14days, and plasma free thyroid hormones (fT3, fT4), outer ring deiodination and Na+/K+-ATPase activities in gills and kidney, as well as other osmoregulatory and metabolic parameters were measured. Low salinity conditions (5ppt) elicited a significant increase in fT3 (29%) and fT4 (184%) plasma concentrations compared to control animals (acclimated to 40ppt, natural salinity conditions in the Bay of Cádiz, Spain), while the amount of pituitary thyroid stimulating hormone subunit ß (tshb) transcript abundance remained unchanged. In addition, plasma fT4 levels were positively correlated to renal and branchial deiodinase type 2 (dio2) mRNA expression. Gill and kidney T4-outer ring deiodination activities correlated positively with dio2 mRNA expression and the highest values were observed in fish acclimated to low salinities (5 and 15ppt). The high salinity (55ppt) exposure caused a significant increase in tshb expression (65%), but deiodinase gene expression (dio1 and dio2) and activity did not change and were similar to controls (40ppt). In conclusion, acclimation to different salinities led to changes in the peripheral regulation of thyroid hormone metabolism in seabream. Therefore, thyroid hormones are involved in the regulation of ion transport and osmoregulatory physiology in this species. The conclusions derived from this study may also allow aquaculturists to modulate thyroid metabolism in seabream by adjusting culture salinity.


Assuntos
Salinidade , Dourada/fisiologia , Glândula Tireoide/fisiologia , Algoritmos , Animais , Reação em Cadeia da Polimerase em Tempo Real , Tiroxina/sangue
4.
Fish Physiol Biochem ; 42(1): 365-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26486515

RESUMO

The role of insulin-like growth factor 1 (IGF-1) on regulation of growth hormone (GH) and prolactin (PRL) as well as the possible involvement of IGF-1 receptor subtype a (IGF-1Ra) mRNA was assessed in juvenile specimens of Sparus aurata. IGF-1Ra was successfully cloned, and active receptor domains were localized in its mRNA precursor. Also, phylogenetic analysis of the protein sequence indicated a closer proximity to IGF-1Ra isoform found in zebrafish and other teleosts, than to the isoform IGF-1Rb. The most abundant presence of IGF-1Ra mRNA was detected in white muscle, whereas head kidney showed the lowest gene expression among 24 different studied tissues. Pituitaries of juvenile specimens of S. aurata were incubated in vitro with different doses of IGF-1 (0, 1, 100, and 1000 ng mL(-1)) during a period of 10 h. Total RNA with a high quality could be obtained from these pituitaries. PRL mRNA expression significantly increased with increasing IGF-1 doses. Similarly, IGF-1Ra mRNA increased its expression in response to IGF-1. However, GH mRNA levels decreased in a dose-dependent manner after IGF-1 treatment. The contradictory responses of GH and PRL expressions to IGF-1 in our experiment are possibly mediated by IGF-1Ra presence on the somatotrophs and prolactotrophs. The increase in IGF-1Ra mRNA levels may be related to the proper activation of the PI3-K/Akt signal transduction pathways which are normally involved in GH and PRL regulation.


Assuntos
Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/farmacologia , Hipófise/metabolismo , Prolactina/genética , Receptor IGF Tipo 1/genética , Dourada/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Músculos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-25446605

RESUMO

The effects of starvation and re-feeding on metabolites and tissue composition, GH/IGF-I axis, and digestive enzyme activities in juvenile thick-lipped grey mullet (Chelon labrosus) were evaluated. Fish were divided into three feeding groups (n=72, 82.00±4.09 g initial body mass). The control group was fed 1% of their body mass once a day throughout the experiment with commercial pellets. The other two groups were deprived of feed for 21 days (starved), or re-fed for 7 days after 14 days of food deprivation (re-fed). Full-length cDNAs from pituitary GH and hepatic IGF-I were cloned by screening a cDNA library or by PCR techniques. Furthermore, changes in their mRNA expressions were assessed by real time PCR in specimens maintained under the different feeding patterns. Results showed a negative growth in starved and re-feeding groups. Starvation induced a significant increase in plasma triglycerides as well as a decrease in liver glucose and glycogen. Re-feeding increased plasma glucose, lactate and protein, as well as liver glucose and glycogen. In addition, starvation significantly increased pituitary GH expression, while re-feeding down-regulated it. No significant changes were observed in hepatic IGF-I expression in any dietary treatment. Digestive enzyme activities were not significantly affected either by starvation or by re-feeding. The results of the present work suggest that juveniles of the thick-lipped grey mullet may easily adjust their metabolism under situations characterized by a short-term starvation and re-feeding.


Assuntos
Smegmamorpha/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Digestório/enzimologia , Metabolismo Energético , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Inanição
6.
Gen Comp Endocrinol ; 197: 5-17, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332959

RESUMO

The dynamic changes in mRNA expression levels for vasotocin (AVT) and isotocin (IT) receptor gene levels were assessed in a time-course response study in immature male specimens of the gilthead sea bream (Sparus aurata) submitted to hyper- (55‰ salinity) and hypo-osmotic (5‰ salinity) challenges. Two different cDNAs for the AVT receptor and one for the IT receptor (V1a2-type and V2-type AVTR, and ITR, respectively) were cloned by screening an S. aurata brain cDNA library. Genes for these receptors were expressed differentially and is nearly ubiquitously in 26 of the examined tissues. In the gills, both environmental salinity challenges up-regulated AVTR V1a2-type gene expression concomitantly with mRNA expression protein activity of Na(+), K(+)-ATPase gene expression and protein, whereas the AVTR V2-type and cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels were associated with mRNAs environmental salinity, indicating a possible connection between AVTRs and these transporters. In kidney, AVTR V1a2-type gene expression peaked rapidly and lasted only a short time (12-24h) in response to both osmotic challenges. In contrast, AVTR V2-type mRNA levels were enhanced in specimens exposed to hyperosmotic conditions, whereas they decreased under hypoosmotic environments, suggesting an antidiuretic role related to the vasoconstriction function. In the hypothalamus, only the expression of the AVTR V2-type gene was enhanced at 7 and 14 days under both experimental conditions. In the liver, both AVTRs had increased mRNA levels, with the upregulation of their AVTR V2-type gene increasing faster than the V1a2-type. The ITR gene was not sensitive to variations of external salinity in any of the analyzed tissues. Our results demonstrate the involvement of the vasotocinergic, but not the isotocinergic, pathway as well as the hypothalamic function, in the adjustments of both osmoregulatory and metabolic processes after osmotic challenges.


Assuntos
Osmorregulação/genética , Ocitocina/análogos & derivados , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Dourada/genética , Vasotocina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica/fisiologia , Brânquias/fisiologia , Hipotálamo/fisiologia , Fígado/fisiologia , Masculino , Dados de Sequência Molecular , Osmorregulação/fisiologia , Pressão Osmótica/fisiologia , Ocitocina/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Salinidade , Dourada/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-24021911

RESUMO

To investigate the physiological roles of arginine vasotocin (AVT) and isotocin (IT) in osmoregulatory process in gilthead sea bream (Sparus aurata), a time course study (0, 12h, and 1, 3, 7 and 14 days) has been performed in specimens submitted to hypoosmotic (from 40‰ salinity to 5‰ salinity) or hyperosmotic (from 40‰ salinity to 55‰ salinity) challenges. Plasma and liver osmoregulatory and metabolic parameters, as well as AVT and IT pituitary contents were determined concomitantly with hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels. Previously, sequences coding for pro-VT and pro-IT cDNAs were cloned. Two osmoregulatory periods related to plasma osmolality and metabolic parameter variations could be distinguished: i) an adaptative period, from 12h to 3 days after transfer, and ii) a chronic regulatory period, starting at day 3 after transfer. Higher values in hypothalamic pro-VT and pro-IT mRNA expression as well as in pituitary AVT and IT storage levels in both hypo- and/or hyper-osmotic transfers have been distinguished. These increase correlated with changes in plasma cortisol levels, suggesting an interaction between this hormone and pro-VT expression. Furthermore, pro-IT expression enhancement also suggests a role of the isotocinergic system as a modulator in the acute stress response induced by hyper-osmotic challenge in S. aurata.


Assuntos
Osmorregulação/fisiologia , Ocitocina/análogos & derivados , Dourada/fisiologia , Vasotocina/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Hidrocortisona/sangue , Hipotálamo/metabolismo , Masculino , Dados de Sequência Molecular , Concentração Osmolar , Ocitocina/fisiologia , Hipófise/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Salinidade , Alinhamento de Sequência
9.
Artigo em Inglês | MEDLINE | ID: mdl-22580053

RESUMO

Facilitative glucose transporters (GLUT) are transmembrane transporter proteins involved in glucose transport across the plasma membrane. In fish, several GLUT mRNAs have been cloned, but to date there is no information about these transporters in the marine euryhaline teleost Sparus aurata. In the present study we obtained the complete coding sequence from S. aurata GLUT1 (saGLUT1), composed by 4483 bases, presenting a 79 to 95% identity with respect to other fish GLUT1 mRNAs. The analysis of the 5' and 3' UTRs showed the presence of several post-transcriptional regulatory elements. In addition, the effect on saGLUT1 mRNA expression of the osmotic acclimation to four different environmental salinities (5, 12, 40 and 55 ppt), in gills, kidney, liver and brain, was studied. Changes in mRNA expression levels were detected in gills and brain, indicating that GLUT1 has an important role in these organs for osmotic acclimation in S. aurata.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Salinidade , Dourada/genética , Animais , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...